Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(3)2023 02 24.
Article in English | MEDLINE | ID: covidwho-2287002

ABSTRACT

Impaired immunogenicity of COVID-19 vaccinations in inflammatory arthritis (IA) patients results in diminished immunity. However, optimal booster vaccination regimens are still unknown. Therefore, this study aimed to assess the kinetics of humoral and cellular responses in IA patients after the COVID-19 booster. In 29 IA patients and 16 healthy controls (HC), humoral responses (level of IgG antibodies) and cellular responses (IFN-γ production) were assessed before (T0), after 4 weeks (T1), and after more than 6 months (T2) from the booster vaccination with BNT162b2. IA patients, but not HC, showed lower anti-S-IgG concentration and IGRA fold change at T2 compared to T1 (p = 0.026 and p = 0.031). Furthermore, in IA patients the level of cellular response at T2 returned to the pre-booster level (T0). All immunomodulatory drugs, except IL-6 and IL-17 inhibitors for the humoral and IL-17 inhibitors for the cellular response, impaired the immunogenicity of the booster dose at T2. Our study showed impaired kinetics of both humoral and cellular responses after the booster dose of the COVID-19 vaccine in IA patients, which, in the case of cellular response, did not allow the vaccination effect to be maintained for more than 6 months. Repetitive vaccination with subsequent booster doses seems to be necessary for IA patients.


Subject(s)
Arthritis , COVID-19 , Humans , COVID-19 Vaccines , BNT162 Vaccine , Interleukin-17 , COVID-19/prevention & control , Immunoglobulin G , Vaccination , Antibodies, Viral
2.
Neurol Neurochir Pol ; 2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-2282679

ABSTRACT

Headache is one of the most prevalent, although often underreported, symptoms of coronavirus disease 2019 (COVID-19). It is generally accepted that this symptom is a form of secondary headache due to systemic viral infection. There are several hypotheses that try to explain its aetiopathogenesis. One of the most compelling is related to innate immune response to viral infection. This rationale is supported by similarities to other viral infections and the temporal overlap between immunological reactions and headache. Moreover, several key factors in innate immunity have been shown to facilitate headache e.g. interferons, interleukin (IL) -1-ß, IL-6, and tumour necrosis factor. There is also a possibility that the virus causes headache by the direct activation of afferents through pattern recognition receptors (i.e. Toll-like receptor 7). Moreover, some data on post COVID-19 headache and after vaccination against SARS-CoV-2 infection suggests a similar cytokine-mediated pathomechanism in these clinical situations. Future research should look for evidence of causality between particular immune response factors and headache. Identifying key molecules responsible for headache during acute viral infection would be an important step towards managing one of the most prevalent secondary headache disorders.

3.
Front Immunol ; 13: 1033804, 2022.
Article in English | MEDLINE | ID: covidwho-2119876

ABSTRACT

Introduction: Previous studies have shown a reduction in the effectiveness of primary COVID-19 vaccination in patients with rheumatic diseases. However, limited data is available regarding the effectiveness of the COVID-19 vaccine booster dose, especially on cellular response. The study aimed to assess the humoral and cellular immunogenicity of a booster dose in patients with inflammatory arthritis (IA). Patients and methods: 49 IA and 47 age and sex-matched healthy controls (HC) were included in a prospective cohort study. Both groups completed primary COVID-19 vaccination and after more than 180 days received a BNT162b2 booster shot. Humoral responses (level of IgG antibodies) and cellular responses (IFN-γ production) were assessed before and after 4 weeks from the booster dose of the vaccine. Results: After the booster dose, all participants showed an increased humoral response, although significantly reduced antibody levels were observed in IA patients compared to HC (p=0.004). The cellular response was significantly lower both before (p<0.001) and after (p<0.001) the booster dose in IA patients as compared to HC. Among the immunomodulatory drugs, only biological and targeted synthetic drugs lowered the humoral response after booster vaccination. However, the cellular response was decreased after all immunomodulatory drugs except IL-17 inhibitors and sulfasalazine. Conclusion: Our data indicate that patients with rheumatic diseases present lower humoral and cellular responses after the COVID-19 booster vaccine in comparison to HC. This may translate into a recommendation for subsequent booster doses of the COVID-19 vaccine for rheumatic patients.


Subject(s)
Arthritis , COVID-19 , Rheumatic Diseases , Humans , Immunization, Secondary , COVID-19 Vaccines , Prospective Studies , BNT162 Vaccine , COVID-19/prevention & control , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL